Electron beam controlled covalent attachment of small organic molecules to graphene.

نویسندگان

  • Alexander Markevich
  • Simon Kurasch
  • Ossi Lehtinen
  • Oliver Reimer
  • Xinliang Feng
  • Klaus Müllen
  • Andrey Turchanin
  • Andrei N Khlobystov
  • Ute Kaiser
  • Elena Besley
چکیده

The electron beam induced functionalization of graphene through the formation of covalent bonds between free radicals of polyaromatic molecules and C=C bonds of pristine graphene surface has been explored using first principles calculations and high-resolution transmission electron microscopy. We show that the energetically strongest attachment of the radicals occurs along the armchair direction in graphene to carbon atoms residing in different graphene sub-lattices. The radicals tend to assume vertical position on graphene substrate irrespective of direction of the bonding and the initial configuration. The "standing up" molecules, covalently anchored to graphene, exhibit two types of oscillatory motion--bending and twisting--caused by the presence of acoustic phonons in graphene and dispersion attraction to the substrate. The theoretically derived mechanisms are confirmed by near atomic resolution imaging of individual perchlorocoronene (C24Cl12) molecules on graphene. Our results facilitate the understanding of controlled functionalization of graphene employing electron irradiation as well as mechanisms of attachment of impurities via the processing of graphene nanoelectronic devices by electron beam lithography.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covalent functionalization based heteroatom doped graphene nanosheet as a metal-free electrocatalyst for oxygen reduction reaction.

Oxygen reduction reaction (ORR) is an important reaction in energy conversion systems such as fuel cells and metal-air batteries. Carbon nanomaterials doped with heteroatoms are highly attractive materials for use as electrocatalysts by virtue of their excellent electrocatalytic activity, high conductivity, and large surface area. This study reports the synthesis of highly efficient electrocata...

متن کامل

Nanostructuring graphene for controlled and reproducible functionalization.

The 'graphene rush' that started almost a decade ago is far from over. The dazzling properties of graphene have long warranted a number of applications in various domains of science and technology. Harnessing the exceptional properties of graphene for practical applications however has proved to be a massive task. Apart from the challenges associated with the large-scale production of the mater...

متن کامل

Controlling the physicochemical state of carbon on graphene using focused electron-beam-induced deposition.

Focused electron-beam-induced deposition (FEBID) is a promising nanolithography technique using "direct-write" patterning by carbon line and dot deposits on graphene. Understanding interactions between deposited carbon molecules and graphene enables highly localized modification of graphene properties, which is foundational to the FEBID utility as a nanopatterning tool. In this study, we demons...

متن کامل

Mechanism studies on the superior optical limiting observed in graphene oxide covalently functionalized with upconversion NaYF₄ :Yb³⁺/Er³⁺ nanoparticles.

The increased utilization of high power laser sources has rendered great challenges for designing effi cient optical limiting (OL) materials to protect human eyes and various delicate optical devices. An ideal optical limiter should greatly attenuate an intense laser beam while exhibiting high transmittance for low-input optical intensity. [ 1 ] Up to now, numerous organic and inorganic materia...

متن کامل

Charging of unfunctionalized graphene in organic solvents.

Unfunctionalized graphene is positively or negatively charged when it is dispersed in organic solvents. The charging is negative in solvents with high electron donor numbers and positive in those with low donor numbers. We suggest that the charging originates from electron transfer between graphene surfaces and solvent molecules, and the stable dispersion of unfunctionalized graphene in organic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 8 5  شماره 

صفحات  -

تاریخ انتشار 2016